Transient Stability Analysis of Power Systems using Koopman Operators

Hyungjin Choi Subhonmesh Bose

Abstract—We propose a Koopman operator based framework to compute the region of attraction (ROA) of power system dynamics following a line or generator failure. Koopman operators are infinite-dimensional linear operators that can describe the evolution of a nonlinear dynamical system. They admit finite-dimensional approximations that can be learnt from time-series data. The spectral properties of these approximations yield the desired ROA—the object of interest in transient stability analysis. We illustrate the proposed method on a 3-bus power system example, and contrast its performance with another direct method based on polynomial optimization.

I. INTRODUCTION

Transient stability analysis of a power system seeks to answer the question: will grid dynamics converge to a stable equilibrium point, following a line fault or a generator failure? Nonlinearity of the power system dynamics poses a fundamental challenge to the development of analytical and scalable computational tools for such studies.

Transient stability analysis is a mature field of research. Proposed methods vary in their degrees of scalability. In this paper, we propose to use Koopman operator theory to specifically compute the domain of attraction of post-fault power system dynamics and use it to estimate critical clearing times (CCTs) of various faults. Koopman operators, developed in [1], lifts the finite-dimensional nonlinear evolution of the state to a linear but infinite-dimensional evolution of the function space of observables (mappings of the state) [2]–[6]. The proposed method computes a finite-dimensional approximation of these operators [7]–[9], the spectral properties of which yield the desired region of attraction (ROA) of the post fault dynamics.

Prior literature on transient stability analysis is extensive; see [10]–[12] for surveys. Time-domain simulation is the simplest and the most widely used technique for such analysis. It does so via the computation of state trajectories through numerical integration [12]. Dynamic variations in solar and wind power output, however, require the computation of a large number of trajectories to provide stability guarantees. Despite its simplicity, such requirements render time-domain simulation unsuitable for power systems with increasing penetration of variable renewable supply.

Direct methods for transient stability analysis seek to characterize the region of attraction using sublevel sets of Lyapunov-style functions for power system dynamics. A Lyapunov function decreases along the system trajectory. Therefore, system states can never escape its sublevel sets [13], [14]. Transient Energy Functions (TEF), expounded in [15]–[18], are examples of Lyapunov-style functions that provide stability guarantees for a class of power system models. TEF methods suffer from two limitations. First, TEFs are only known for a limited class of power system models. Second, even when they are known, computation of ROA from TEFs requires knowledge of the critical potential energy at the boundary of the ROA. The controlling Unstable Equilibrium Point (UEP), and closest UEP in [19]–[22] have been proposed to compute that energy. These methods are generally computationally intensive and often yield conservative ROA estimates. Relevant work also includes Boundary Controlling Unstable (BCU) Equilibrium Point method in [16] which improved computational efficiency compared to other methods and has found applicability in practical power systems [23].

Authors in [24]–[27] have proposed to compute Lyapunov functions for power system dynamics using polynomial optimization, following the seminal work of Parrilo in [14]. While promising in theory, state-of-art software for these methods do not scale favorably with the size of the power system.

In Section II, we introduce Koopman operator theory and in Section III, we describe how it allows us to compute the ROA of a power system. In Section IV, we present results from our numerical experiments on a three-bus power system to illustrate our approach. Concluding remarks and directions for future work are outlined in Section V.

II. KOOPMAN OPERATOR THEORY

In this section, we introduce Koopman operator theory for power system dynamics, and outline the procedure to compute its finite-dimensional approximation. The next section builds on this approximation to compute the region of attraction for post-fault dynamics of a power system. Throughout this paper, we use the notation \mathbb{R} and \mathbb{C} to denote the sets of real and complex numbers, respectively.

The electromechanical dynamics of a power system can be collectively described by differential algebraic equations (DAEs). Power flow equations for the network define the algebraic equations. Using Kron reduction as in [28], one can obtain a nonlinear ordinary differential equation (ODE) description of the system dynamics as in [29] of the form $\dot{x} = f(x)$. Here, $x \in \mathbb{R}^n$ denotes the vector of dynamic states that includes machine states such as generator rotor angles/speeds, and controller states associated with the governor, voltage regulator, etc.

We discretize the ODE with time step Δ to obtain

$$x_{t+1} = F(x_t)$$

for $t \geq 0$. We choose Δ smaller than the least time constant of the continuous-time system, but large enough to show appreciable change in the states in each time step. Assume

H. Choi and S. Bose are with the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Email: {hjchoi12, bose}@illinois.edu.
henceforth that F describes the discretized grid dynamics following a contingency.

A. Koopman Operator and its Spectral Decomposition

Our description of Koopman operator theory largely mirrors that in [7]. Define an observable g as a complex map on the state space \mathbb{X}, i.e., $g : \mathbb{X} \to \mathbb{C}$. Let \mathbb{G} denote the space of all observables. Then, Koopman operator $\mathcal{K} : \mathbb{G} \to \mathbb{G}$ propagates an observable through the system dynamics as

$$\mathcal{K}g(x) = g(F(x)).$$ \hspace{1cm} (2)

The above definition implies that \mathcal{K} is a linear but infinite-dimensional operator. Of interest to us is the spectrum of \mathcal{K}, which allows us to compute ROA for power system dynamics following a contingency.

Call $\varphi_\lambda : \mathbb{G} \to \mathbb{G}$ an eigenfunction of \mathcal{K} and λ its associated eigenvalue, if

$$\mathcal{K}\varphi_\lambda = \lambda \varphi_\lambda.$$ \hspace{1cm}

An observable can then be written as a linear combination of these eigenfunctions. In this paper, we focus on the states themselves as observables, and therefore, write

$$x = \sum_{i=1}^{\infty} c_i \varphi_{\lambda_i}(x).$$ \hspace{1cm} (3)

Under the action of \mathcal{K}, the above equation using (2) becomes

$$F(x) = \sum_{i=1}^{\infty} \lambda_i c_i \varphi_{\lambda_i}(x),$$ \hspace{1cm} (4)

that in turn allows us to express the evolution of the state as

$$x_{t+1} = \sum_{i=1}^{\infty} c_i \varphi_{\lambda_i}(x_{t+1}) = \sum_{i=1}^{\infty} \lambda_i c_i \varphi_{\lambda_i}(x_t).$$

In other words, the nonlinear system dynamics in the finite-dimensional Euclidean space \mathbb{X} becomes linear in the infinite-dimensional transformed coordinate system $\{\varphi_{\lambda_i}\}_{i=1}^{\infty}$, as Figure 1 illustrates. Implicit in the above description is the assumption that \mathcal{K} has a countable spectrum. As [30], [31] suggests, this assumption is mostly violated when the underlying system dynamics is chaotic, a behavior we normally do not expect for a power system.

B. Finite-Dimensional Approximation of Koopman Operators

Infinite-dimensionality of the Koopman operator \mathcal{K} and its associated coordinate space described by $\{\varphi_{\lambda_i}\}_{i=1}^{\infty}$ makes it challenging to compute these objects and utilize it to characterize the ROA. Naturally, one seeks a finite-dimensional approximation.

To that end, we aim to express the eigenfunctions as linear combinations of a collection of dictionary functions, given by

$$\Psi := [\psi_1(x), \ldots, \psi_D(x)]^T,$$ \hspace{1cm} (5)

where $\psi_i : \mathbb{R}^n \to \mathbb{C}$ for $i = 1, \ldots, D$. If eigenfunctions can indeed be expressed as linear maps of Ψ, then the dynamics of $\Psi(x) \in \mathbb{C}^D$ should be linear. The extended dynamic mode decomposition (EDMD) algorithm in [7] therefore seeks a matrix $K \in \mathbb{C}^{D \times D}$ that defines the linear dynamics, and aims to minimize

$$J(K) := \|\Psi(x_{t+1}) - K\Psi(x_t)\|^2.$$ \hspace{1cm} (6)

Given a series of tuples

$$(x^1, F(x^1)), \ldots, (x^M, F(x^M))$$

composed of a state and its one-step propagation through the system dynamics F, EDMD solves the data-driven variant of (6), the following least squares problem.

$$\text{Minimize}_{K \in \mathbb{C}^{D \times D}} \sum_{j=1}^{M} \|\Psi(F(x^j)) - K\Psi(x^j)\|^2.$$ \hspace{1cm} (7)

Indeed, K defines the finite-dimensional approximation to the Koopman operator \mathcal{K}. The eigenfunctions of the approximate operator are then given by

$$\varphi_{\lambda_i} = \Psi v_i,$$ \hspace{1cm} (8)

where v_i is the i-th right eigenvector of K with eigenvalue λ_i. The least squares problem in (7) admits a closed-form solution, given by YX^1, where \dagger stands for pseudoinverse, and

$$X := (\Psi(x^1), \ldots, \Psi(x^M)), \quad Y := (\Psi(F(x^1)), \ldots, \Psi(F(x^M))).$$

Two remarks are in order. First, the quality of approximation of \mathcal{K} by K depends on the choice of dictionary functions Ψ. Radial basis functions and Hermite polynomials have appeared in the literature as good candidates, e.g., see [7]. An interesting alternative is advocated by [32]–[34], where they minimize the objective in (7) over \mathcal{K} as well as Ψ, where the latter is represented parametrically via deep neural networks. Second, K can be updated in an online fashion, where the M tuples $(x^i, F(x^i)), i = 1, \ldots, M$ are processed one at a time or in batches using recursive least squares. See [35] for details.
III. REGION OF ATTRACTION USING KOOPMAN OPERATORS

Having described the EDMD algorithm to compute an approximate Koopman operator K, we now delineate a method to estimate the ROA of a dynamical system. Based on this method, the next section presents transient stability analysis of a 3-bus power system example.

From (4), we have

$$F(x) = \sum_{i=1}^{\infty} \lambda_i c_i \varphi_{\lambda_i}(x). \tag{9}$$

Starting from x_0, the system trajectory at time t is given by

$$x_t = \sum_{i=1}^{\infty} \lambda_i^t c_i \varphi_{\lambda_i}(x_0). \tag{10}$$

If λ_1 is the eigenvalue of K with the largest modulus, then we infer from the above relation that

$$x_t \approx \lambda_1^t c_1 \varphi_{\lambda_1}(x_0) \tag{11}$$

for large t. In other words, the dominant eigenvalue largely dictates the dynamics over a long time-horizon. The relation in (11) also implies that any spatial variation of the dominant eigenfunction across the state space gets amplified through time. That is, one expects different behavior of the system in the long run, starting from two different points, if $|\varphi_{\lambda_1}|$ takes appreciably different values at these initial points. System trajectories starting from an initial point within the ROA will ultimately converge to the equilibrium point of the dynamics. Hence, one expects $|\varphi_{\lambda_1}|$ to be roughly the same over the ROA and exhibit sharp changes across its boundary. We propose to compute the boundary of the ROA by identifying such sharp changes in the modulus of the dominant eigenfunction of the approximate Koopman operator K. More precisely, we compute

$$\partial \text{ROA} := \{ x \in \mathbb{X} : |\varphi_{\lambda_1}(x)| = \bar{\varphi} \}, \tag{12}$$

where

$$\bar{\varphi} := \frac{1}{M} \sum_{j=1}^{M} |\varphi_{\lambda_1}(x^j)|$$

is computed from data. Here, ∂ROA stands for the boundary of the ROA. The technique described here is inspired by the discussions in [36, Section 2.2].

The efficacy of our scheme relies on two factors:

- the richness of the dictionary functions that dictates how well K approximates \mathcal{K}, and
- the sampling strategy of the M points, and whether they span points both in and out of the ROA.

IV. TRANSIENT STABILITY ANALYSIS OF A 3-BUS POWER SYSTEM

We now utilize the scheme outlined in the last two sections to compute the ROA of a 3-bus power system, and demonstrate possible applications of that computation. We consider a two-machine infinite-bus power system used for our numerical experiments are shown. The systems consists of two synchronous generators at buses 1 and 2 connected to the infinite-bus at bus 3. Red rectangles are circuit breakers that are opened to isolate faults that we study.

Fig. 2. The two machine infinite bus power system used for our numerical experiments are shown. The systems consists of two synchronous generators at buses 1 and 2 connected to the infinite-bus at bus 3. Red rectangles are circuit breakers that are opened to isolate faults that we study.

The electromechanical dynamics of system is described by the classical second-order synchronous generator model [37]:

$$\frac{d\delta_i}{d\tau} = \omega_i - \omega_s,$$

$$\frac{d\omega_i}{d\tau} = \frac{1}{M_i} \left(P_i^M - \sum_{j \in N_i} E_i E_j X_{ij} \sin(\delta_i - \delta_j) - D_i (\omega_i - \omega_s) \right). \tag{13}$$

Here, δ_i and ω_i are the angle and angular frequency of the i-th generator, M_i is an inertia constant, D_i is a damping constant, P_i^M is a mechanical power input, ω_s is the system frequency, X_{ij} is a line reactance between bus i and j, and N_i collects the indices of all neighboring generator buses connected to the i-th generator bus. Values for the model parameters are provided in the appendix.

We apply our method to compute ROAs for two different faults:

- The synchronous generator at bus 2 malfunctions, and its machine starts slowing down at some time $\tau < 0 \text{ [s]}$. Assume that it is isolated from the network at $\tau = 0 \text{ [s]}$ by opening the circuit breaker at generator bus 2.
- The transmission line between buses 3 and 4 (denoted by the dotted line) has a balanced three-phase line-to-ground fault at some time $\tau < 0 \text{ [s]}$, and is cleared at $\tau = 0 \text{ [s]}$ by opening the circuit breakers located at buses 3 and 4.

1) Sampling data points: To compute the ROA, we perform numerical integration of the model in (13) with a time step $\Delta = 0.1 \text{ [s]}$ from $\tau = 0 \text{ [s]}$ to $\tau = 1 \text{ [s]}$ for 2000 randomly-chosen initial points within the range $|\delta_i - \delta_i^{eq}| \leq \pi + 1 \text{ [rad]}$ and $|\omega_i - \omega_s| \leq 40 \text{ [rad/s]}$. Any points beyond $\delta_i \geq 2\pi \text{ [rad]}$ are neglected.

2) Choice of dictionary functions: Following [7], [9], we choose 2000 radial basis functions (RBFs) of the form:

$$\psi_i(x) = ||x - x_i^0||^2 \ln \left(\frac{||x - x_i^0||}{\delta_i^{eq}} \right), \tag{14}$$

where x_i^0 defines the ‘center’ of the i-th dictionary function. The centers are calculated using k-means clustering algorithm (with $k = 2000$) on the data x_1^0, \ldots, x_M^0 with $M = 14611$ for

One can alternately utilize the magnitude of the gradient of the dominant eigenfunction to identify the boundary of the ROA. Such alternate definitions will be explored in future work.
generator-fault) and $M = 16519$ (for line-fault). Note that k-means clustering algorithm may induce centers equal to a data point, making some $\psi_j(x)$ zero in (14). We can avoid that by perturbing k-means centers away from overlapped data points.

A. Results on generator malfunction

Our experiments yield the dominant eigenvalue $\lambda_1 = 0.9894$ for the approximate Koopman operator, and the threshold $\bar{\varphi} = 4.0871$. Figure 3(a) illustrates the resulting ROA, and how the dominant eigenfunction exhibits a sharp change across its boundary, drawn in blue. Figure 3(b) demonstrates that the ROA estimated via the proposed method is much less conservative when compared to that obtained using polynomial optimization in [24], [27] and is also closer to the true ROA computed via exhaustive numerical integration. Accurate estimation of ROA is crucial in many applications. For example, ROAs are useful to compute critical clearing times (CCTs) of various faults, that in turn dictate relay settings for circuit breakers. Using the fault-on trajectory shown in Figure 3(b), EDMD yields a CCT of 0.397 [s] that is close to the actual CCT of 0.398 [s]. Our results from EDMD are much less conservative compared to polynomial optimization that yields a CCT of 0.265 [s], that is roughly 33% smaller than the true CCT.

The polynomial optimization approach begins by approximating the system dynamics F using polynomial functions of the states. Then, it seeks to maximize the size of a set over which a polynomial Lyapunov-style function decreases along the approximated system trajectories. That set provides the estimated ROA. Polynomial optimization problems can be solved via a hierarchy of semidefinite programs of increasing problem size. In theory, this hierarchy solves the optimization problem asymptotically. However, problem sizes quickly become prohibitively large, and only a few levels of the hierarchy can be explored even for a relatively small power system such as in Figure 2. The estimated ROA in Figure 3 is derived with the same parameters as in [27]. The lack of scalability of this approach, in part, motivated our current work.

B. Results on three-phase line fault

For the line fault, the leading eigenvalue is $\lambda_1 = 0.9738$ and the threshold is given by $\bar{\varphi} = 2.7103$. Using the trajectory of φ_{λ_1} in Figure 4, we infer a CCT of 0.330 [s], that is close to the exact value 0.373 [s] found by repeated simulations.

V. CONCLUDING REMARKS & FUTURE WORK

This paper proposes a linear operator-theoretic framework to estimate the region of attraction for the nonlinear dynamical system model of a power-system. The estimation relies on the computation of an approximate Koopman operator. The spectral properties of this operator yields the desired ROA. We demonstrate the applicability of this method to estimate CCTs of various fault scenarios in a numerical case study.
Our ultimate goal is to use the proposed method within an online stability monitoring scheme. In this scheme, an offline calculation first estimates an ROA from a large data-set using the Koopman operator framework. Then, the approximate Koopman operator is updated over time using recursive least squares with new datapoints generated from a model description, estimated from real measurements. The current paper defines the first step in that direction. We plan to contrast such a scheme against other online stability assessment, e.g., proposed in [38], [39], in terms of accuracy and scalability. An important challenge in generalizing our technique for large power system examples lies in the identification of a rich set of dictionary functions. We plan to deploy neural networks along the lines of [32] towards that task.

VI. APPENDIX

The parameters for the experiments on the Two-Machine Infinite-Bus power system in Figure 2 are given by: system angular frequency \(\omega_s = 120\pi \text{[rad·s}^{-1}] \), inertia constant \(M_{1,2} = 0.0159 \text{[rad}^{-2}\text{s}] \), machine damping \(D_{1,2} = 0.0053 \text{[rad}^{-1}\text{s}] \), machine terminal voltage \(E_{1,2} = 1 \text{[pu]} \), infinite-bus angle \(\delta = 0 \text{[rad]} \), mechanical power input \(P_1^M = 1, P_2^M = 0.6 \text{[pu]} \), and line impedance \(X_l = 0.2 \text{[pu]} \).

REFERENCES